A theoretical framework for supervised learning from regions
نویسندگان
چکیده
Supervised learning is investigated, when the data are represented not only by labeled points but also labeled regions of the input space. In the limit case, such regions degenerate to single points and the proposed approach changes back to the classical learning context. The adopted framework entails the minimization of a functional obtained by introducing a loss function that involves such regions. An additive regularization term is expressed via differential operators that model the smoothness properties of the desired input/output relationship. Representer theorems are given, proving that the optimization problem associated to learning from labeled regions has a unique solution, which takes on the form of a linear combination of kernel functions determined by the differential operators together with the regions themselves. As a relevant situation, the case of regions given by multi-dimensional intervals (i.e., “boxes”) is investigated, which models prior knowledge expressed by logical propositions. & 2013 Elsevier B.V. All rights reserved.
منابع مشابه
Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملWised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge
The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...
متن کاملSemi-Supervised Learning with Multi-View Embedding: Theory and Application with Convolutional Neural Networks
This paper presents a theoretical analysis of multi-view embedding – feature embedding that can be learned from unlabeled data through the task of predicting one view from another. We prove its usefulness in supervised learning under certain conditions. The result explains the effectiveness of some existing methods such as word embedding. Based on this theory, we propose a new semi-supervised l...
متن کاملMultiple-Instance Learning from Distributions
We propose a new theoretical framework for analyzing the multiple-instance learning (MIL) setting. In MIL, training examples are provided to a learning algorithm in the form of labeled sets, or “bags,” of instances. Applications of MIL include 3-D quantitative structure– activity relationship prediction for drug discovery and content-based image retrieval for web search. The goal of an algorith...
متن کاملFinding the Boundary of Use to Improve Repair Mechanisms for Supervised Learning Systems
Numerous “repair” mechanisms have been developed to improve the training data for supervised learning (SL) systems including feature selection, noise correction, and active learning. These repair mechanisms myopically repair instances as long the estimated system performance continues to improve. Such general repair can lead to unnecessary repairs and overfitting from repair which can lower s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 129 شماره
صفحات -
تاریخ انتشار 2014